Beyond Symptoms Alleviation: Population-level Benefits of COVID-19 Oral Direct-acting Antiviral (DAA) Treatment and Resulting Decreases in Infectivity and Transmission

Chacon-Araya M¹, Ortendahl JD², Lee J², Broder M², Brusky S¹

¹Pardes Biosciences, Inc., Carlsbad, CA, United States; ²PHAR, LLC, Beverly Hills, CA United States

Background	Re
 Coronavirus disease (COVID-19) is an unprecedented, persistent global health emergency accounting for over 6.8 million deaths in total, and over 150,000 new cases every day worldwide.¹ 	Tab
 Efforts to combat COVID-19 have largely focused on vaccination and non-pharmaceutical interventions to reduce transmission and decrease hospitalization and death.² 	Tota
 First generation COVID-19 direct-acting antivirals (DAAs) are only authorized for high-risk individuals to reduce individual risk of disease progression. However, DAAs can also impact transmission by reducing viral load, thereby shortening the duration of infectivity.^{3,4} 	Amo Amo Tota
 Next generation oral DAAs in development may have safety profiles that are amenable to broader eligibility and use.³ 	Cov Offic ER v
Objective	Hos Lon
This analysis estimates the economic and clinical impact of increasing the utilization of DAAs to treat COVID-19, including a broader population of otherwise healthy individuals.	^a Dif
Methods	Figu
 A susceptible-infected-recovered-susceptible model was developed to estimate COVID-19-related outcomes based on DAA uptake (Figure 1). 	
 Cost-savings projected included reduced healthcare utilization amongst individuals and, importantly, potential savings attributable to reduced transmission. 	
 Cost inputs included treatment acquisition costs, adverse events, healthcare utilization, and productivity losses based on publicly available pricing guides and published literature.⁴⁻¹⁰ 	
 For productivity losses, we assumed 3 days of missed work for a non-hospitalized case, 5 days of missed work for an ER visit, and 10 days of missed work for a hospitalization, all costed at a US-average hourly wage of \$32.58.¹¹ We did not include child or elder care expenses or other indirect costs. 	
 Clinical inputs were based on data from the Centers for Disease Control and Prevention and published literature.¹²⁻¹⁵ 	
 One million hypothetical individuals were assessed in the model simulation with clinical and economic outcomes estimated for DAA adoption by risk level. 	
Figure 1. Model Schematic	
	Clin • Th an • By de
Susceptible O Infected O Recovered	• Th • De in

Dead

(from COVID)

Consumer Health Ratings: Emergency Room-Typical Average Cost of Hospital ED Visit.

US Bureau of Labor Statistics. Average hourly and weekly earnings of all employees on

private nonfarm payrolls by industry sector, seasonally adjusted. 2022 Nov.

private nonfarm payrolls by industry sector, seasonally adjusted. 2022 Nov.

Pfizer Labs. Fact sheet for healthcare providers: emergency use authorization for

US Bureau of Labor Statistics. Average hourly and weekly earnings of all employees on

Peterson-KFF Health System Tracker, 2022

Paxlovid™ 2023 Feb

Hea Lon Pro Tota Diff

Trinkl J et al. Paxlovid Significantly Reduces COVID-19 Hospitalizations and Deaths. Epic

National Center for Health Statistics. Monthly Provisional Counts of Deaths by Select

Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19)

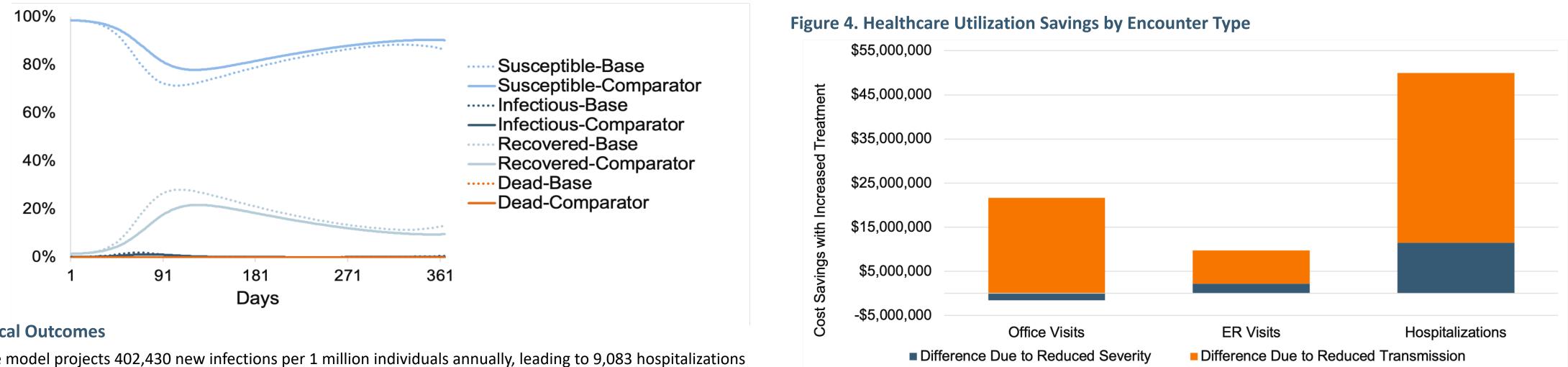
Centers for Disease Control and Prevention. COVID Data Tracker. Accessed 202

Research. 2022.

September 30

Accessed 2022 September 30.

Causes, 2020-2022. Accessed 2022 September 30.


- References
- WHO Health Emergency Dashboard. WHO (COVID-19). Accessed 2023 March 27.
- Moore S et al. Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study. Lancet Infect Dis. 2021 Jun;21(6):793-802.
- Rahmah L et al. Oral antiviral treatments for COVID-19: opportunities and challenges. Pharmacol Rep. 2022 Dec;74(6):1255-1278.
- Pfizer Labs. Fact sheet for healthcare providers: emergency use authorization for
- Paxlovid™. 2023 Feb.
- Physicians' Fee & Coding Guide. InHealth; 2020. US Census Bureau. Annual Social and Economic Supplements. Accessed 2022 July

sults

ble 1. Clinical Outcomes per 1 Million Individuals					
	Base Year	Comparator Year	Difference ^a	\$1,20	
tal infections	402,430	311,891	90,539	쯡 \$1,0 0	
nongst high-risk individuals	80,486	62,378	18,108	30,1\$ \$1,00 دوری داری	
nongst standard risk individuals	321,944	249,513	72,430	08¢ al	
tal deaths	151	107	45		
vid deaths	107	73	34	တိ \$60	
fice visits	97,360	77,004	20,355	/ear	
visits	14,005	9,918	4,086		
spitalizations	9,083	6,427	2,656	Ō	
ng COVID cases	15,695	12,164	3,531	\$20	

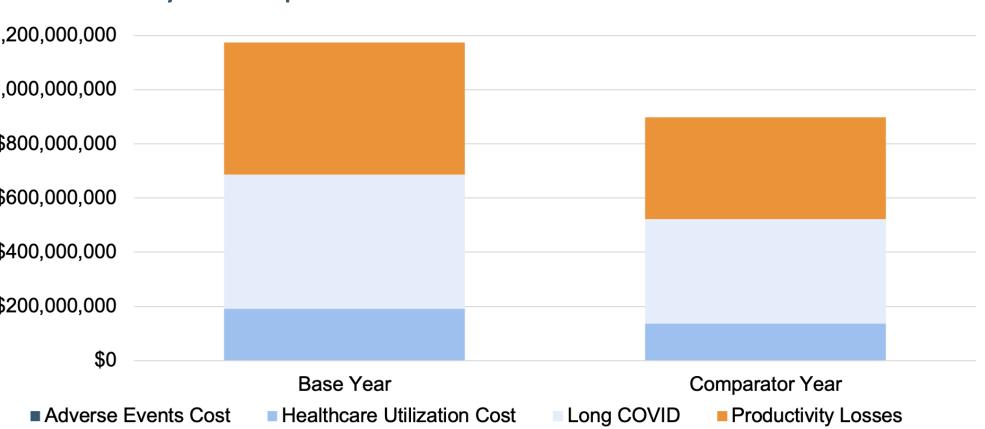
ifference reflects reduction in burden in comparator year

ure 2. Proportion of Individuals in Each Health State

nical Outcomes

- he model projects 402,430 new infections per 1 million individuals annually, leading to 9,083 hospitalizations nd 107 deaths (**Table 1**).
- increasing DAA use by 10% in the high-risk population and 20% in the standard-risk population, infections ecreased to 311,891, with 2,656 fewer hospitalizations and 34 fewer deaths (Table 1).
- his projects to over 11,000 deaths averted for the full US population.
- ecreases in medical encounters were driven by reduction in transmission (77% of the decrease) and reductior severity amongst those treated (23% of the decrease).
- Among deaths averted, 72% were attributable to the reduction in transmission
- Rates of Long COVID decreased by 22%, including 706 cases in the high-risk population.

Table 2. Annual Costs Per 1 Million Individuals


	Base Year	Comparator Year	Conclu
lverse events cost	\$73,130	\$311,723	• This st
althcare utilization cost	\$191,854,721	\$137,285,667	and tra
ng COVID	\$495,248,040	\$383,827,769	• New D
oductivity losses	\$486,361,741	\$375,944,471	and su
tal costs	\$1,173,537,632	\$897,369,630	
fference from base year	_	-\$276,168,002	

Presented at the 2023 International Society for Pharmacoeconomics and Outcomes Research Annual Conference, Boston, MA, May 7-10, 2023

EE240

3. Total Costs by Scenario per 1 Million Individuals

Economic Outcomes

• Total costs decrease by 23.5% with increased treatment (Table 2, Figure 3).

• The savings of \$276 million in direct costs and productivity losses amongst one-million individuals would project to a savings of over \$90 billion for the US population.

• Reductions in Long COVID-associated costs are 40% of the total cost savings associated with increased treatment.

• Within healthcare utilization costs, 84% of the decrease is due to reduced transmission with treatment (Figure

• A reduction in productivity losses due to fewer infections results in \$110 million in savings.

lusions

study is among the first to model the potential population-level impact of DAAs in reducing infectivity transmission, a factor currently under-emphasized in the literature.

/ DAAs under development with potentially improved safety profiles may expand the uptake of treatment substantially reduce the clinical and economic burden of COVID-19.