Potential Health and Economic Outcomes of a Blood-Based Genomic Test as a Prescreen for Lung Cancer in the US Medicare Population

BACKGROUND

- Annual screening for lung cancer by low-dose computed tomography (LDCT) reduces mortality.^{1,2}
- Despite no cost-share for covered individuals, limited availability and frequent 'false alarm' findings have impeded widespread adoption,^{3,4} diminishing potential population health gains.
- Here, we examine a model of the clinical and economic effects of introducing an accessible bloodbased genomic test (BGT) used as a prescreen to support more rapid and refined uptake of LDCT screening within the US Medicare population.

METHODS

- Multiple Monte Carlo simulations were performed in a hypothetical cohort of 6-million Medicare lung cancer screening-eligible individuals to compare clinical outcomes over a 5-year period for the following scenarios:
- A. NO BLOOD-BASED GENOMIC TEST: The rate of primary LDCT screening increases from 5.9% at baseline to 9.3% by year 5 based on real-world estimates.
- B. BLOOD-BASED GENOMIC TEST: The rate of primary LDCT screening increases from 5.9% at baseline to 9.3% by year 5. The rate of BGT use is 10% each year; 100% of BGT(+) cases and 0% of BGT(-) cases proceed to LDCT screening.
- The BGT was set to 85% sensitivity and 50% specificity for lung cancer.

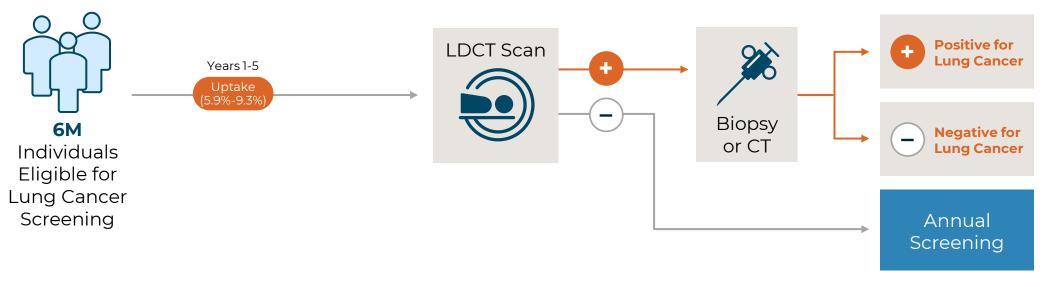
MODEL ASSUMPTIONS

- Model assumptions were derived from SEER⁵ and published clinical trials of LDCT screening,¹ the CISNET Smoking History Generator for population smoking patterns,⁶ and published lung cancer treatment costs.⁷
- All individuals were Medicare beneficiaries.
- Individuals met the lung cancer screening eligibility criteria recommended in 2021 by the US Preventive Services Task Force⁸: adults 50-80 years old; smoking history of ≥20 pack-years; currently smoke or quit within the past 15 years.
- Annual probability of having a non-screen-detected cancer was set at 75%.
- Other model assumptions are shown in the tables.

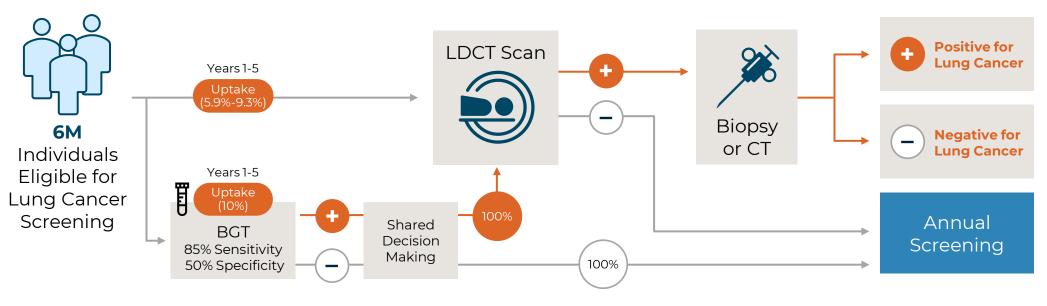
OUTCOMES

- 5-year impact of the use of a BGT on:
- Number of lung cancer deaths
- Number of LDCT false-positives
- Number needed to screen to detect a cancer
- Stage distribution of lung cancers
- o Cancer treatment costs

REFERENCES


- National Lung Screening Trial Research Team, et al. N Engl J Med. 2011;365(5):395-409.
- de Koning HJ, et al. N Engl J Med. 2020;382(6):503-513.
- Fedewa SA, et al. J Natl Cancer Inst. 2021;113(8):1044-1052.
- . Pham D, et al. Clin Lung Cancer. 2020;21(3):e206-e211. . National Cancer Institute. SEER*Stat Software.
- https://seer.cancer.gov/seerstat/index.html
- National Cancer Institute. CISNET https://resources.cisnet.cancer.gov/projects/
- Sheehan DF et al. Cancer Med. 2019;8(1):94-103.
- 8. USPSTF, et al. JAMA. 2021;325(10):962-970.
- 9. Pinsky PF, et al. J Med Screen. 2013;20(3):165-168.

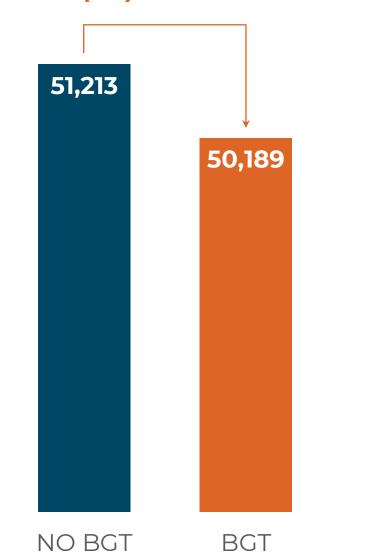
Poster #CO179 was presented at ISPOR 2023; 7-10 May 2023; Boston, MA.

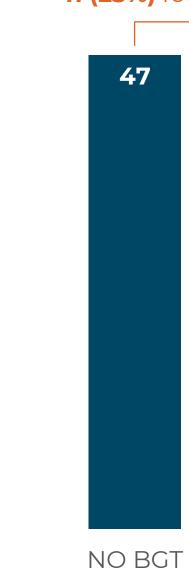

The poster content is the intellectual property of the authors. Contact Peter Bach at peter.bach@delfidiagnostics.com to request permission to reuse or distribute. PBB, NT, and CC are employed by and have stock ownership in Delfi Diagnostics, Inc. At the time the work was completed, *JDO and KB worked for PHAR, LLC and PHAR, LLC was a paid consultant of Delfi Diagnostics, Inc.

How could a blood-based genomic test improve outcomes in a Medicare lung cancer screening-eligible population?

SCENARIO A: NO BLOOD-BASED GENOMIC TEST

SCENARIO B: BLOOD-BASED GENOMIC TEST

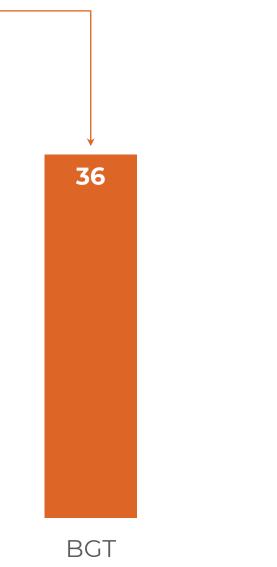



LUNG CANCER DEATHS

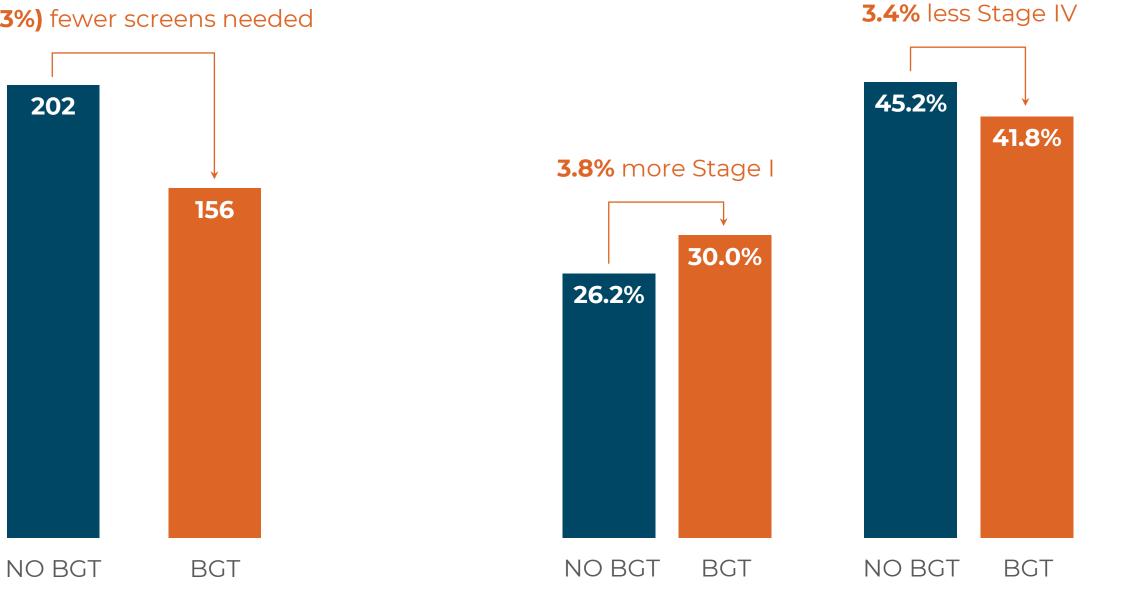
1024 (2%) fewer deaths

LDCT FALSE-POSITIVE TO TRUE-POSITIVE RATE

11 (23%) fewer FPs to TPs


The authors thank Anna Lau, PhD, for help with poster design and layout.

Peter B. Bach,¹ Jesse D. Ortendahl,^{2*} Katalin Bognar,^{2*} Niti Trivedi,¹ Chris Cisar¹ ¹Delfi Diagnostics Inc., Baltimore, MD; ²Partnership for Health Analytic Research, Beverly Hills, CA


							Stage I			
Screening Uptake	Year 1	Year 2	Year 3	Year 4	Year 5	ar 5 Stage Distribution at Detection ¹		Stage II	Stage III	Stage IV
A. LDCT (No Genomic Test) ³	5.9%	6.8%	7.6%	8.5%	9.3%	Screen detected at 1st screen	63.0%	7.2%	17.0%	12.8%
B. Genomic Test (100/0)	10%	10%	10%	10%	10%	Screen detected at 2nd screen	63.0%	7.2%	17.0%	12.8%
LDCT if Test(+)	100%	100%	100%	100%	100%	Screen detected at 3rd screen	63.0%	7.2%	17.0%	12.8%
LDCT if Test(-)	0%	0%	0%	0%	0%	Not screen detected	22.8%	4.7%	24.6%	47.9%

Screening Test Characteristics	Blood-Based Genomic Test	LDCT ⁹
True-positive rate	85%	93%
False-positive rate	50%	24%
Positive predictive value	1.0%	2.4%
Negative predictive value	99.8%	99.9%

NUMBER NEEDED TO SCREEN

In this simulation, a blood-based genomic test designed to improve uptake and efficiency of lung cancer screening showed substantial population-level health gains while reducing lung cancer treatment costs.

DELFI

MODEL ASSUMPTIONS


Cancer Costs by Stage at Diagnosis (monthly) ⁷	Initial Phaseª	Continuing Phase	Terminal Phase ^b
Stage 1	\$2,226	\$2,111	\$18,795
Stage 2	\$2,226	\$2,111	\$18,795
Stage 3	\$7,964	\$4,502	\$18,795
Stage 4	\$9,740	\$6,431	\$18,795

^aInitial phase is the first 6 months after diagnosis; ^bTerminal phase is the final 6 months before death

CANCER TREATMENT COSTS (USD\$)

\$232M reduction in costs

